The field deployable digital X-Ray solution for weld inspection in O&G

Steve Zahorodny
2015 ASNT Annual Conference
Salt Lake City

Imagination at work.

© 2015 General Electric Company. All rights reserved.
Agenda

Field inspection
• Actual weld inspection
• Challenges of the actual workflow

Opportunities
• Time for a change?
• Alternative equipment
• Calculation

Platform and Tools

Conclusion
Field inspection
Actual weld inspection

Actual weld inspection in Oil&Gas (workshop and refinery) traditionally performed with Gamma (Ir 192, Se75, Co60) in combination with Industrial Film:

Reason:

• Good enough images to cover Standard
• Convenient (small and portable equipment)
• Tradition (certain level of conservatism wrt. changing workflow & technology)
• Cheaper

A better, cheaper and safer alternative available?
Challenges of the actual workflow (I)

1. Drawbacks of using Isotopes
 - **HAZARD**: Constant, no "switch off"
 - Risk of capsules/wire failure with the following alarm to authorities, investigations, ...
 - Limited Service Life:
 - Extra costs & labour for transport to factory (re-energizing)
 - Maintenance costs camera
 - Recurring investment every 6-8 months
 - Half-life value:
 - Ir192: 74 days
 - Se75: 120 days
Challenges of the actual workflow (II)

- Rules, regulations, paperwork and costs for ownership and usage
- Larger safety perimeter (e.g. inspecting small bore with a higher Ci vs. XR)
- More shielding needed (Half Value Layer Ir192 is ±4,8mmPb, for 300kV is ±1,5mmPb)
Challenges of the actual workflow (III)

2. Image quality

- Both energy and intensity level unadjusted
- Lower image contrast
- SNR (image quality) & BSR (sharpness) negatively influenced by spectral noise
- Because of FocalSpot of Gamma, minimum ffd will be larger (Ug) and therefore the exposure time will be much longer compared to XR with smaller FS

(example Fe-weld SWSI WT30mm:
 - Ir192, 40Ci, 3mmFS, 465mm fdd (EN Class B), D5 OD 2,5 ➔ 4,1 minutes
 - IV Mob 160 MM2 HP, 1mmFS, 175mm fdd, 10mA, D5 OD2,5 ➔ 42 seconds

© 2015 General Electric Company. All rights reserved.
Opportunities
Time for a change?

With some workflow adaptation, alternative technology is available and proven to perform safer, better, cheaper.

- Portable X-Ray generators
- Mobile HV generators
- CR (Computed Radiography) and DDA (Digital Detector Array) covering weld inspection as well as profile radiography, CUI, FAC, ...
Portable X-Ray generators

Reliable, lightweight and portable
Directional and panoramic tubes
HF CP Technology
Different energies: 160, 200 and 300kV
With 3mm and 1mm (!) focal spot

Ideal contrast as energy is optimised for the thickness

BUT, power source required
Mobile HV Generator: Isovolt Mobile 160

Offering you:

- Industrial radiography, but mobile
- Short exposure times (1600W (!) and 10mA)
- 100% duty cycle (autonomous cooling unit)
- Power mode and dual focus operation
- Image quality covering most stringent EN standards (HF CP technology)
- Safe working conditions (20m HV cables)
- Wide range of weld solutions (HP, Mini Focus, panoramic (100mmD) and very small diameter tubes available)
Isovolt Mobile 160: Typical setup
Overview ISOVOLT mobile 160

High Voltage Cables
- 5 m
- 10 m
- 15 m
- 20 m

Additional tubes pre-programmed and fully compatible:

<table>
<thead>
<tr>
<th>Accessory</th>
<th>FS</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV 160MM2/HP</td>
<td>0.4 & 1mm</td>
<td>Ø 110mm</td>
</tr>
<tr>
<td>IV 160M2/0.4-0.4</td>
<td>1mm</td>
<td>Ø 110mm</td>
</tr>
<tr>
<td>IV 160M1/10-30</td>
<td>1 & 3mm</td>
<td>Ø 105mm</td>
</tr>
<tr>
<td>IV 160M2/0.4-0.4HP</td>
<td>0.4 & 0.4mm</td>
<td>Ø 110mm</td>
</tr>
<tr>
<td>IV 160M2/0.4-1.5</td>
<td>0.4 & 1.5mm</td>
<td>Ø 110mm</td>
</tr>
<tr>
<td>IV 160MC2</td>
<td>Panoramic</td>
<td>Ø 100mm</td>
</tr>
<tr>
<td>MCR120A25</td>
<td>Panoramic</td>
<td>Ø 70mm</td>
</tr>
<tr>
<td>MCD 100 H3</td>
<td>FS 3mm</td>
<td>Ø 70mm</td>
</tr>
</tbody>
</table>

© 2015 General Electric Company. All rights reserved.
Financial calculation

Modest 3 year calculation for 1 system:
Ir192: 90-120k USD (container, Isotope, shipments, necessary administration for permits, shipments, usage)
IV Mobile 160: ±65k USD
Eresco 65 MF4: ±46k USD
Time for a change, results

Benefits of this new technology:
- Increased safety (no power = no radiation)
- No transport challenges
- Increased image quality
- Faster results
- In 3 yrs.: X-Ray half the investment instead Gamma
- Smaller safety zones, easier operation in plants.

Drawbacks:
- Physically limited in energy.
Platform and Tools
One Software platform: the Rhythm Spider

- FS50b
- CRxFlex
- CRxVision
- CRx25P
- Portable DDA´s
- Static DDA´s
- Rhythm Archive
- X-ray controller
- Rhythm RT
- Rhythm Review

© 2015 General Electric Company. All rights reserved.
DICONDE Standard - Turning information into intelligence

AQUIRE SOLUTIONS
- RT - Radiography
- UT – Ultrasonic
- CT – Computed Tomography
- RT - Remote visual inspection
- EM - Electromagnetic
- TM - Testing machines
- Data management software

REVIEW SOLUTIONS
- QA/QC
- Level II or Level III
- Remote Collaboration

SHARE SOLUTIONS
- Remote Collaboration
- Automated Workflow
- Convert data into actionable information
- Measure the health of the asset by product, region and channel
- Find growth opportunities via data mining

ARCHIVE - REPORT SOLUTIONS
- 100 % DICONDE/ASME CODE - Non Propriety Data Format
- Measure the health of the asset
- Find quality and verification opportunities via data mining
- Traceability
- Data Integrity/Data Management

© 2015 General Electric Company. All rights reserved.
DICOM/DICONDE compliant:
• Ensures customers not to be “locked in” to propriety form.
• Eliminates data conversion issues customers face today
• Simplifies integration NDT information into other systems
• Ensures data integrity (NO manipulation of raw data)

TIFF represents just an image: a small header + image pixel values. It does not typically inform the user
• of where the image was taken,
• who took the image,
• from which modality it is, etc.

DICONDE is much more than an image:
• Extra info like all Technique data, all Component data, ...
• The image is a complete report in itself
• An International Standard that providing a common platform for users when dealing with NDT images.

Interoperability of the DICONDE platform enables data-sharing between systems, locations, and/or customers.
Flash! filter

A unique image enhancement software tool based upon innovative technology bringing NDT inspection to an advanced level.

Why:
- A raw image is not optimal for reading and interpretation
- Image processing visualizes the essential information which is embedded in the raw image without creating/hiding indications!

Benefits:
- Higher productivity with more reading comfort
- Faster & consistent results
- Less retakes & shorter exposure times, lower labor cost / job
Example: 6” pipe, WT 10.8mm, DWSI, 150kV, 3mA, 500SFD, 8 minute exposure.
Example: 4” Pipe, WT 5 mm, 140kV, 5.0mA, 1030FDD, 6x6s, IQI-Source Side
Example: DWDI, 140kV, 5mA, 6x6s, 1160FDD IQI
Source Side
Advanced Report Generator for Weld

<table>
<thead>
<tr>
<th>Customer</th>
<th>Ref #</th>
<th>Project #</th>
<th>Order #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client 1</td>
<td>Client 1</td>
<td>PA 678-12</td>
<td>PO 00831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam Number</th>
<th>Specific Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>1 of 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welding Technique</th>
<th>Source</th>
<th>Strength (G)</th>
<th>Lateral Corrosion</th>
<th>Exposure Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIG 6668822</td>
<td>57</td>
<td>97</td>
<td>No</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Film Class</th>
<th>Image Plate Size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>10 x 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welder</th>
<th>Location in Film</th>
<th>Right</th>
<th>Left</th>
<th>Not Present</th>
<th>Weld Hold</th>
<th>Cutout</th>
<th>Beam - Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>6668822_1</td>
<td>12</td>
<td>0 - 30</td>
<td>14</td>
<td>x</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6668822_2</td>
<td>12</td>
<td>25 - 55</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6668822_3</td>
<td>12</td>
<td>50 - 80</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6668822_4</td>
<td>12</td>
<td>75 - 105</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6668822_5</td>
<td>27</td>
<td>100 - 130</td>
<td>14</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6668822_6</td>
<td>12</td>
<td>125 - 20</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfbericht Durchstrahlungsprüfung ASME
Radiographic Test Report ASME

<table>
<thead>
<tr>
<th>Customer</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report-Nr</td>
<td>002</td>
</tr>
<tr>
<td>Order-Nr</td>
<td>-</td>
</tr>
<tr>
<td>Material</td>
<td>1.8935+N.P460NH.NL1</td>
</tr>
<tr>
<td>Diameter</td>
<td>Ø 508 x 15 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Treatment</th>
<th>Type</th>
<th>Welding Technique</th>
<th>Process</th>
<th>Date of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
<td>SMAW/GMAW</td>
<td>26.01.2011</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Film Material</th>
<th>Film Grade</th>
<th>Film Brand</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 3</td>
<td>C 4</td>
<td>C 6</td>
<td>Agfa D6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Size</th>
<th>Exposure Time</th>
<th>Front</th>
<th>Back</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2 mm</td>
<td>8 Minutes</td>
<td>Front</td>
<td>Back</td>
<td>400</td>
</tr>
<tr>
<td>Bildqualitätsprüfung</td>
<td>ASME</td>
<td>Film Brand</td>
<td>Object Source to Object Distance</td>
<td></td>
</tr>
<tr>
<td>IP-0005</td>
<td>ASME B</td>
<td>15 mm</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

© 2015 General Electric Company. All rights reserved
The use of CR and DDA for Profile Radiography (I)

As a bonus, the same portable X-Ray source can be used in the field for erosion/corrosion inspection, combined with either DDA or CR.

Automated measuring software (patented mathematical algorithm) for pipe wall inspection & reporting.

The visible edge is an optical illusion thus not exact, so a mathematical determination of the outer wall is needed.

Computer based evaluation algorithms:

- Higher **precision** of measurement on RAW image (DICONDE)
- **Faster** and **Consistent** results, operator independent
- Higher productivity
- Digital archiving, direct **export** into weld reports
- Import & export measurements into pipe data managing system (e.g. Pipecad)
The use of CR and DDA for Profile Radiography (II)

Flash! applied on RAW image ➞ no effect on results
Conclusion
Conclusion

If NDT service companies can reduce their dependency on Gamma sources by converting to mobile X-Ray technology, while adapting from Film to CR/DDA technology, for ±40% of their RT needs they would be able to:

- Reduce impact of the strict Governmental legislation on isotopes
- Improve H&S track record for the (service) company
- Reduce their operational cost structure
- Optimize their assets to deliver consistent results to end-customers
- Increase image quality and working throughput
Questions?